

Fermilab Microelectronics Initiative ASIC Research & Development Department

Farah Fahim & Jim Hirschauer

ASIC Design mission at Fermilab

ACADEMIC RESEARCH

- Support interdisciplinary research
- Enables new scientific discovery and foundational engineering
- Novel solutions
- Mission: new knowledge and education of students

NATIONAL LABS: ADVANCED SCIENTIFIC INSTRUMENTATION

- Support scientific experiments operating in extreme environments
- Mid-size scaling for large experiments
- Mission: robust performance over several decades

INDUSTRY – PRODUCT DRIVEN

- Support consumer electronics
- Mature designs
- Mission: incremental product driven design

Fermilab ASIC Design Future

Strategic Structure

Physics Advisory Group Dave Christian Ted Liu Juan Estrada Nhan Tran Artur Apreysan Ron Lipton ASIC Department ASIC Groups

Ultrafast timing and

Cross-cutting initiatives

- 16 ASIC designers
- 1 scientist
- 1 Application Physicist
- 1 test engineer, 1 engineering associate

Quantum and Analog

Cryoelectronics

Currently recruiting for 3 more positions:

Testing and

Tool support

2 ASIC designers + 1 Application Physicists

Advanced Digital and

Verification

HEP - CMS & DUNE

Operation in extreme conditions – high ionizing radiation, cryogenic operation with long lifetime requirements

- ETROC: Timing layer ASIC for CMS LGAD detectors (picosecond timing chip in collaboration with SMU)
- ECON (T&D) High Granularity Calorimeter Concentrator chip
- COLDATA/ COLDADC –DUNE data concentrator and ADC chip (completed in FY 21)

Quantum

Deep cryogenic electronics on advanced technology nodes

- Cryogenic modelling for development of 4K process design kit for GF 22 FDX
- QSC: Quantum Science center (National Quantum Initiative center)
 - Ion trap based Quantum Simulator: Cryoelectronics Controller
 Low noise, high speed DACs
- QuantiSed
 - Control electronics for Compact Optical Atomic Clocks with MIT LL
 - SNSPD readout with JPL, GT and Caltech (Quantum Communication). Demonstrated cryo LNA performance.

Artificial Intelligence/ Machine Learning

Hardware - software codesign, driven by edge compute: Processing data at source, real-time feedback and control. Neuromorphic low power architectures with integrated memory

- Low-power, Low-latency Autoencoder
 - ECON (65 nm, test vehicle for implementation: with NU & U.Columbia)
 - Working with Mentor Graphics (hls4ml) to integrate TMR in HLS tool
- Cryo AI: Quantum ML for controls and readout
 - Ultra low power implementation in GF 22 nm
 - RISC V processor and Network on chip (Next gen R&D for both HEP and Quantum applications)
- Radhard/ cryogenic eFPGA on-chip (backend of ASIC) working with industry to develop IP

Pixel Detectors

Gigapixel/ Megapixel camera systems – high resolution, low power, operating in extreme conditions

- Device Physics New detector technology: Detector R&D funds
 - Skipper CCD in CMOS collaboration with SLAC and Tower Semiconductor
 - Ultrafast skipper CCD (SiSeRo) collaboration with MIT LL (high gain, high speed, non-destructive readout)
- Readout of CCD (Dark matter detection OSCURO)
 - MIDNA: Low Noise readout of CCDs (Corelated multi sampling amplifier with analog averaging).
 Recently demonstrated single photon counting
- Al_pixel_detector: 1Mfps megapixel detector
 - SLAC (BES) seeding activity
- Qpix: R&D for DUNE far detector with U.Hawaii, U. Penn & UTA

New Microelectronics Initiative

Fermilab led co-design team: PI – Davide Braga

Hybrid cryogenic detectors enabled by new materials and fabrication processes

- FNAL : DM application, skipper-in-CMOS, cryo CMOS, system integration
- Labs : ANL/JPL/NIST (SNSPDs), SLAC (skipper readout)
- Academia: MIT/Caltech (SNSPDs)
- Industry: GF (cryo CMOS), Tower Semiconductor (skipper-in-CMOS),
 Synopsys (cryo modelling)
- HEP, BES, FES, ASCR

Microelectronics ECA (1st in HEP)

- Radhard neural networks for frontend data processing
- Beyond CMOS processing Blue sky R&D
- Phase III pixel detector R&D
- Working in conjunction with ORNL led co-design team

DOE Microelectronics centers likely to be announced in FY 22

Focus on both: Engineering Projects and R&D

Strong focus on getting a process in place for projects

- Specifications
- Design reviews
- Documentation
- COMMUNICATION

Flexibility for R&D

- Continuous R&D effort
- Funding for development
- Collaboration with universities
- Demonstrators for next generation of projects

10

Collaboration with Universities

- Create a model comparable to CERN [20 staff + 20 students]
 - Enables knowledge transfer
 - Creates a culture of teaching and learning
 - Research aspect of the development
 - Workforce development
- Strong collaboration with NU EE department (PhD students based at Fermilab)
- Started ASIC Design Associate position 5 summer interns last year
- Started collaborations with Columbia U., EPFL, Georgia Tech, UCSB, Stonybrook U.,

Collaboration with industry

- Started joint development with x on cryoelectronics for Quantum Systems
- In discussion with several other companies including NVIDIA, Honeywell
- Supporting several DOE SBIR companies
- Involved in Snowmass process (co-lead of Application and Industry)
 - DOE CAD-EDA tool initiative for low cost, higher volume tools for scientific research
 - Engaging CAD vendors to support microelectronics for DOE

Technology Transfer

Commercializing - Participated in the Innovation Discovery Event Innovation fund and other Polsky programs
Lab innovation fellow (Shaorui Li)

Backup

22FDX cryo testing and characterization

- Collaboration/subcontract with EPFL progressing well
- Development of test structure for RF/low-freq noise characterization of transistor:
 - Design on schedule for Nov tapeout
- 2. Test plan for device measurement and model extraction late 2021/early 2022
 - Some delay due to availability of cryo probe station
 - Test plan agreed
- Good working relation with GlobalFoundries
- Initial simplified models

Simplified EKV modeling for 22FDX at 3 K

NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology

D. Braga (FNAL), J. Cressler (Georgia Tech), M. Shaw (JPL), M. Spiropulu (Caltech)

 Cryogenic (4K) SiGe HBT Low-Noise Amplifier (LNA), optimized for low-jitter low-power readout of Superconducting Nanowire Single Photon Detectors (SNSPDs).

- Chip results without SNSPD are promising (been measured in both cold and warm)
- Currently the PCB for SNSPD connected to LNA is not working, which needs to be fixed and retested

Projects	Designers and Circuit Blocks	Current status (Sept. 10)	Action Items
ACC1 (3x0.5x2 mm ²)	Hongzhi: DAC w/ auto- correction [Optional: DAC LSB mismatch test structure]	-Analog schematics updated w/ new pdk models)Analog layout ~40% ready?	-Complete analog layoutComplete I/O ring.
	Chinar: Encoder	-Architecture readyRefine RTL code.	-Complete RTLDigital PnR
DILVERT (1x0.3 mm², 22 pads)	Adam: 16b TDC	-Analog schematics readyAnalog layout 90% readyComplete Analog I/O padsDigital RTL ready.	-Digital PnR
LDRD: Characterization & Modeling (1x1 mm²)	Antonio (EPFL): noise test structures	-Schematics ready. -Layout ~80% ready?	-Complete top-level layoutComplete digital selector
	Hungchi (EPFL): EKV modeling	-Testing time reserved.	-Cryo characterization of GF test devicesExtract simple EKV models.
CryoAl (1.2x1.2 mm ² ?)	Manu/Chinar/Farah: memory & processor	-DCO done -RTL ready. ML algorithm readyDigital flow for PnR ready	-Digital PnR will start upon clean flowRecompiling memory -Voltus flow
CITC1 (DAC: 1.8x1 mm ² & VCO: 1x1.2 mm ²)	Zexi/Sharoui: Cryo HV DAC [Optional: DAC LSB mismatch test structure]	-Schematics updated w/ new pdk models)Layout ~20% ready?	-Complete analog layoutComplete I/O ring.
	Xiaoran: low phase-noise LC-VCO	-Schematics readyVCO core layout ~80% ready?	-Complete analog layoutComplete I/O ring.
ADC (1x1 mm ² -> 1x0.7 mm ² ?)	Troy: 12b capacitive DAC for SAR ADC	-Schematics ready. -Layout ~50% ready?	-Complete analog and top-level layoutComplete I/O ring.

Quantum communication: SNSPD – High speed TDC: DILVERT SNSPD best performance – (operating at 1 - 4K) **Back-Gate Tuned** Time-correlated single photon counting from the deep UV to the mid-infraged Fine Vernier TDC Extremely low dark counts and very high precision CAL₁ RFADY QUANTUM INTERNET - High bandwidth communication STOP FINE Decoder HALT Time tagging + data processing **SNSPD** Amplification 10-bit Counter SNSPD channel 0 OFINE<6:0> TDC 0 Comparator 0 10 -100 Mcps QCOARSE<9:0> S_DIN S_LOAD -S_DOUT Shift Register Comparator 1 LNA channel 1 SNSPD channel 1 TDC 1 (strong-arm latch) (5 -10 ps bin, Adam Quinn, ASIC Design Associate Event 2 -10 ns range, driven data 1 - 10 Gcps jitter: 3-6 ps rms) readout High speed links Comparator 30 **TDC 30** SNSPD channel 30 LNA channel 30 Comparator 31 **TDC 31** SNSPD channel 31

32 to 256 channels

PLL + clock distribution

10 GSPS ADC operating at 4K with Microsoft

Troy England

 Time interleaved 1GSPS SAR sub-**ADCs**

Progress:

- Further iterating architecture
- CDAC schematic and layout iteration
- CDAC tapeout in Nov to study mismatch effect on resolution o ADC

Block Diagram of the ADC

Block Diagram of the Digital Calibrations

LC-VCO Test Structure

Xiaoran Wang

- High-Speed (**10GHz**) low jitter LC VCO
- Working at **cryogenic temperature**.
- **Double biasing** (Top PMOS and Bottom NMOS) for better phase noise performance
- Coarse tuning: MOM Cap bank with 32/64 band for high precision and high resolution.
- Fine tuning: Test structure for varactors: MOS D=S=B/MOS Inversion mode/MOS accumulation mode
- Large signal effects (voltage amplitude varies) on tuning range (Kvco) and linearity

Cryogenic Electronics at 4K for Ion Traps **Specifications** Target for 1st Prototype Long-Term goal **Output Voltage** +/- 6 V +/- 10 V **Joint Team**: Shaorui Li, Zexi Liu, Xiaoran Wang, Farah Range (limited by process device Fahim (FNAL); Chris Seck, Raphael Pooser (ORNL) maturity) S. Li, "Challenges in developing cryoelectronics for ion-Voltage resolution 1 mV 1 mV trap-based quantum computing". in *Cryoelectronics* (12 V/ 1 mV -> 14 bit)(20 V / 1 mV -> 15 Workshop, Tuesday 10/19, 3:15 - 4 pm (MT) bit) **Output Noise** < 100 nV/srqt(Hz)~1 nV/sqrt(Hz) **Design Challenges:** @ 0.5-5MHz @ 0.5-5MHz Low output noise: < 100nV/sqrt(Hz) around a wide **Updating Rate** 1-10 MS/s 100 MS/s frequency range (0.5 – 5 MHz) and at low frequency. Total average < 5 mW/DAC ~500 mW for 100 Low power: < 5 mW/DAC (limited by the cooling power of Ch. power

the cryostat) while driving a wide rage of load capacitance (70 – 1800 pF) of +/- 10 V full scale at 10- Ion Traps Controller: Room vs. Cryogenic Electronics

100 MHz waveform updating rate.

 High resolution: 14-16 bit for precise control and not disturbing RF electrodes.

Memory: 100 electrodes * 14 bit * 5000 points ~ 2.5 MB.

Our Unique Solutions:

- Low-noise charge-mode DAC with calibration
- High-density memory (eMRAM)

- RISC V processor to control the DNN accelerator
- Manages data and maintains input/output average to flag an anomaly
- Anomaly detector
- Accelerator is reconfigurable and weights can be reprogrammed
- Utilizes SLVT and LVT library for low power performance

Integrated Electronics/Photonics to Enable Portable Trapped-Ion Optical Clocks

- Motivation: high-precision, fieldable clocks for ultra-light dark matter search
- Developing technology for portable optical clocks based on trapped Sr⁺ ions
 - lon array with trap-chip integrated electronic and photonic control elements
 - In-chip optics for individual ion-site addressing
 - Integrated SPADs for ion-state readout
 - Electronics to update trapping potentials to reduce systematic uncertainties; also for biasing and readout of SPADs
 - 3D integration of all control elements
 - In-loop, on-chip processing based on measurements: reduced external-control overhead

Collaboration partners: Funded by HEP-QIS QuantISED

Farah Fahim, Shaorui Li, Hongzhi Sun

John Chiaverini, Robert McConnell

Compact Optical Atomic Clocks

Analog part:

- Updated the schematics based on the latest design kit from the foundry
- Circuits re-simulated and modified based on latest model
- Block-level layout on going
- Targeting taping out in November

Digital part:

- Initial draft of the architecture with Verilog code
- Working with Chinar for digital implementation.

DURIN ASIC (Dark-matter Use-case Readout ASIC Integrating N-SiSeRo's)

- 65nm CMOS, multichannel ASIC
- SiSeRO operating voltage allows for DC coupled readout
- Baseline of 2MHz/500ns single read (incl. CDS), up to 5MHz/100ns
- Drain readout for improved speed
- DC-coupled OTA (new) + dual slope integrator readout for CDS (from MIDNA)
- Programmable current bias to remove offset
- Cascode transistor

Status:

- Schematic completed for active cascode, preamplifier, low-noise biasing mirror
- 3 programmable gain ranges (500, 5000, 50000 h+)
- Sub-h+ single-shot noise
- Integrator currently off-chip

Next:

Skipper CMOS

Ben Parpillon, SLAC, Miguel Sofo Haro, Fabricio Alcalde

Motivation

- CCDs have been critical to a broad range of science over the last half century recognized by 2009 Nobel Prize
 - · CCD foundries have been decreasing in number due to declining commercial interest
 - · CCDs have no on-chip processing ability
 - · CCDs are slow
 - Skipper CCDs have demonstrated remarkable noise levels through repeated nondestructive readout
- This project combines the intelligence of CMOS and the low noise from a Skipper nondestructive readout fabricated in a high-volume foundry
- Physics Applications
 - · Low mass dark matter searches
 - · Astrophysics: deep measurements of dark energy and dark matter signatures
 - Single-photon quantum sensing

Project Overview

- 1. Design and Fabricate a CIS test chip.
 - → Tapeout target: 11/15/21
- 2. Demonstrate low noise capabilities for a single measurement (target < 2e- RMS)
- 3. Demonstrate photon counting with micro-second scale readout time capabilities
- 4. Fabricate and characterize pixel variations and process splitting for the pixel structure.
 - → Optimize Quantum Efficiency of the pixel
 - → Identify best pixel structure
 - → improve modeling

11/17/21

Innovation

- CCNDR: skipper CCD in CMOS with Non-Destructive Readout
- Pixel Technology: Combining Pinned Photodiode (low noise, hgih gain sensor, demonstrated 0.7e-noise) with CCD-like gate structure for non-destructive read
- 180nm CIS process
 - ✓ High-throughput, commercial foundry
 - √ High readout parallelization capabilities
 - ✓ Low noise/ high SNR for fewer averages
 - > 3 order of magnitude faster readout time than CCD*
 - √ Finer feature size
- Fabrication: Back side Illuminated for high quantum efficiency

Skipper ASIC: Pixel matrix with skipper

Readout ASIC

Ultimate Goal

If our test chip is successful:

- Upgrade the design and build a Single Photon CIS circuit:
 - 1. Leveraging accurate models and best pixel variation
 - 2. Leveraging best analog front-end architecture and IP blocks
 - 3. Implement new features (e.g. on the fly gain selection)
- Hybridize the fabrication (3D or bump bonding)
 - . Pixel on its own tier : Improved detection area
 - Highly parallel architecture -> implementing amplification and ADC every 3x3 pixels could enable 1Kfps readout speed capabilities
 - 3. Possibility to design the ROIC in a finer process node (e.g.: 65nm or lower)

True 3D

MIDNA

- Preamplifier largely responsible for noise performance drives power consumption
- DC Restore prevents the saturation of the integrator sticking baseline to V_{REF}
- Buffer to provide the current necessary for the Integrator
- Switchable Integrator to implement CDS on chip with efficient bandwidth

Noise Measurements at Room Temperature and Liquid Nitrogen

- At room temperature, single integration noise with MIDNA alone is successfully 1/3 of noise with CCD included!
- Averaging was saturated out due to 1/f noise being injected after CDS
- · Removed with updated clocking!
- Liquid nitrogen setup requires long ribbon cabling that is coupling in noise even without dunking
- Dunking continues to make it worse
- Follows $\frac{1}{\sqrt{NSAMP}}$ much better
- Note bottom trace before next slide

Preliminary Results, $\frac{1}{\sqrt{NSAMP}}$ Scaling Restored!

- The averaging method assumes no 1/f added after CDS
- The integrator adds some small amount of 1/f noise
- Chopping in the integrator used to eliminate 1/f noise contribution
- Restored the $\frac{1}{\sqrt{NSAMP}}$ scaling!
- Room temperature
- AC grounded input

Results and Future Work for MIDNA

- Successfully less than 1/3 of CCD noise even at room temperature!
- Cryogenic functionality down at 77 Kelvin!
- Controlled temperature testing with CCD in progress
- Starting design work for next version of chip
- Grow to many more channels to follow the CCD, up to 64
 - Project scaling is currently limited by cost of readout
- Integrate reference generator and analog-to-digital converter
 - Greatly reduce the sensitive analog signals going off chip
- Enable digital processing of data on chip
 - The ADC combined with on-chip memory enables many averaged reads internally
 - Improves noise, power, and complexity compared to analog solutions, especially off chip

MIDNA Chip Image

